
LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

 

 

 
  



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

2 
 

 

 

LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

Department of Computer Science and Engineering 
 

  
  
  
  

LLaabb  MMaannuuaall  

  

  
SSuubbjjeecctt  NNaammee::  Data Structure  

CCoouurrssee  CCooddee::  CS-303  

CCoouurrssee::  BB..TTeecchh  

SSeessssiioonn::22002233--2244 

    

  

  

  

  
PPrreeppaarreedd  BByy      

                                                                                

                                                                                                                                                      

  
  

  

  



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

3 
 

  
  

  

TTAABBLLEE  OOFF  CCOONNTTEENNTT  
 
 

Sr. 

No. 

Particulars  

1 Course Outcome  
2 University Scheme  
3 Syllabus  
4 List of Experiments  
5 Expected Viva Voice questions  

 
  
  
  
  
  
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

4 
 

 

 
Vision and Mission of the Institute 

 

VISION OF THE INSTITUTE 

To become a pioneer institute in technical education and innovations to build competent 

technocrats and leaders for the nation. 

 

MISSION OF THE INSTITUTE 

M1. To enhance the academic environment with innovative teaching learning processes and 

modern tools. 

M2. To Practice and nurture high standards of human values, transparency and accountability. 

M3. To collaborate with other academic and research institutes as well as industries in order to 

strengthen education and research. 

M4. To uphold skill development for employability and entrepreneurship for interdisciplinary 

research and innovations.  

 

 

 

 
Vision and Mission of the Department 

 

VISION OF THE DEPARTMENT 

To be a centre of excellence for providing quality technical education to develop future leaders 

with the aspects of research &computing, Software product development and entrepreneurship. 

 

MISSION OF THE DEPARTMENT 
 
M1: To offer academic programme with state of art curriculum having flexibility for 

accommodating the latest developments in the areas of Computer science engineering 

M2: To conduct research and development activities in contemporary and emerging areas of 

computer science & engineering. 

M3: To inculcate moral values & entrepreneurial skills to produce professionals capable of 

providing socially relevant and sustainable solutions. 

 

 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

5 
 

 

 
FOREWORD 

 
 
 
 

It is my great pleasure to present this laboratory manual for second year 

engineering students for the subject of Data Structure to understand the paradigms 

and approaches used to analyze and design algorithms and to appreciate the impact 

of algorithm design in practice. 
 

It also ensures that students understand how the worst-case time complexity of an 
algorithm is computed. This being a core subject, it becomes very essential to have 
clear theoretical and designing aspects. 
 
 

This lab manual provides a platform to the students for understanding the basic 
concepts of designing and analyzing of algorithm. This practical background will 
help students to gain confidence in qualitative and quantitative approach to 
synthesize and analyze the algorithms. 
 
 
 
 
 
 
 
 
 

 

H.O.D 

 

 

 

 

 

 

 

 

 

 

 

 
 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

6 
 

 

 

 

LABORATORY MANUAL CONTENTS 
 
 
 

This manual is intended for the Second Year students of CSE branch in the subject 
of  Data Structure. This manual typically contains practical/ Lab Sessions related to 
Design and Analysis of Algorithm covering various aspects related to the subject 
for enhanced understanding. 
 
 

Students are advised to thoroughly go through this manual rather than only topics 
mentioned in the syllabus as practical aspects are the key to understanding and 
conceptual visualization of theoretical aspects covered in the books. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

7 
 

Dos and Don’ts in Laboratory :- 
 
 

1. Turn off the machine once you are done using it. 
 
2. Student should not attempt to repair, open, tamper or interfere with any of 

the computer, printing, cabling or other equipment in the laboratory. 
 
3. Make entry in the Log Book as soon as you enter in the laboratory. 
 
4. All the students are supposed to enter the terminal number in the log book. 
 
5. Handle equipments with care. 
 
6. Strictly observe the instructions given by the Teacher/ Lab Instructor. 
 
7. Do not change the terminal on which you are working. 
 
8. Do not install/remove any software on system without permission. 
 
9. Do not open any irrelevant internet sites on lab computer. 
 
10. Do not remove anything from computer laboratory without permission. 
 
11. Do not misbehave in the computer laboratory. 
 
12. Do not plug in external devices without scanning them for computer viruses. 
 
 
 
 
 
 

 

Instruction for Laboratory Teachers:- 
 
 

1. Submission related to whatever lab work has been completed should be done 
during the next lab session. 

 
2. Students should be instructed to start the computers. After the experiment is 

over, the students must shut down the Computers and turn off the switches. 
 
3. The promptness of submission should be encouraged by way of marking and 

evaluation patterns that will benefit the sincere students.   



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

8 
 

COURSE OUTCOMES for CS-303 Data structure 
Students should be able to 

CO303.1 Explain operations  arrays, Link list along with their merits and demerits 

CO303.2 Use primitive operations, stack and queue data structures. 

CO303.3 Develop programs to perform operations on Binary Tree,BST. 

CO303.4 Utilize Dijkstra’s algorithm to find spanning tree for a given graph. 

CO303.5 Apply quick and merge sorting methods in problem solving. 

 
 

 

 

Course Articulation Matrix 

CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 

CO303.1 3 3 1 - - - - - 2 - 2 3 

CO303.2 3 - 3 - - 2 - - 2 - - 3 

CO303.3 3 1 3 2 - - - 1 2 - - 3 

CO303.4 3 1 1 2 - 1 - - 2 2 2 3 

CO303.5 3 2 1 - 2 - - - 2 2 - 3 

  3 2 2 2 2 2 - 1 2 2 2 3 

                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

9 
 

 

Program Outcomes as defined by NBA (PO)  

Engineering Graduates will be able to: 

1. Engineering knowledge: Apply the knowledge of mathematics, science, 
engineering fundamentals, and an engineering specialization to the solution of 
complex engineering problems.  
2. Problem analysis: Identify, formulate, review research literature, and analyze 
complex engineering problems reaching substantiated conclusions using first 
principles of mathematics, natural sciences, and engineering sciences.  
3. Design/development of solutions: Design solutions for complex engineering 
problems and design system components or processes that meet the specified needs 
with appropriate consideration for the public health and safety, and the cultural, 
societal, and environmental considerations.  
4. Conduct investigations of complex problems: Use research-based knowledge 
and research methods including design of experiments, analysis and interpretation 
of data, and synthesis of the information to provide valid conclusions.  
5. Modern tool usage: Create, select, and apply appropriate techniques, resources, 
and modern engineering and IT tools including prediction and modeling to 
complex engineering activities with an understanding of the limitations.  
6. The engineer and society: Apply reasoning informed by the contextual 
knowledge to assess societal, health, safety, legal and cultural issues and the 
consequent responsibilities relevant to the professional engineering practice.  
7. Environment and sustainability: Understand the impact of the professional 
engineering solutions in societal and environmental contexts, and demonstrate the 
knowledge of, and need for sustainable development.  
8. Ethics: Apply ethical principles and commit to professional ethics and 
responsibilities and norms of the engineering practice.  
9. Individual and team work: Function effectively as an individual, and as a 
member or leader in diverse teams, and in multidisciplinary settings.  
10. Communication: Communicate effectively on complex engineering activities 
with the engineering community and with society at large, such as, being able to 
comprehend and write effective reports and design documentation, make effective 
presentations, and give and receive clear instructions.  
11. Project management and finance: Demonstrate knowledge and 
understanding of the engineering and management principles and apply these to 
one’s own work, as a member and leader in a team, to manage projects and in 
multidisciplinary environments.  
12. Life-long learning: Recognize the need for, and have the preparation and 
ability to engage in independent and life-long learning in the broadest context of 
technological change. 
 
 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

10 
 

Program Specific Outcomes (PSO)  

 

A graduate of Computer Science and Engineering Program will develop  

PSO1: An ability to apply technical knowledge of computer science and engineering             
fundamentals to become employable in industry. 
PSO2: An ability to develop programming skills using modern software tools and techniques. 
 
PSO3: An ability to develop real time projects for problem solving of domains such as Machine             
Learning, Cyber security, block chain and big data. 

PSO4: An ability to grab research, higher studies and entrepreneurship opportunities towards             
society with moral values and ethics. 
 

Program Educational Objectives (PEO): 

 
PEO 1: Evolve as globally competent computer professionals, researchers and entrepreneurs 
possessing collaborative and leadership skills, for developing innovative solutions in 
multidisciplinary domains. 
 
PEO 2: Excel as socially committed computer engineers having mutual respect, effective   
communication skills, high ethical values and empathy for the needs of society. 
 
PEO 3: Involve in lifelong learning to foster the sustainable development in the emerging areas 
of technology 
 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

11 
 

 

UNIVERSITY SCHEME 

 
 

 

 

 

 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

12 
 

 

 
SYLLABUS 

 

Branch: CSE, III Semester Course: BTech 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

13 
 

 
 

 

 

 

 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

14 
 

LIST OF EXPERIMENTS 
 

 

S.No. EXPERIMENTS  

1. Write a program for create an array. CO1 

2. Write a program to implement the multiplication of [3*3] matrix 
using Array. 

CO1 

3. Write a program to implement Link List. CO1 

4. Write a program that implement stack . CO2 

5. Write a program that implement Queue . CO2 

6. Write a program to implement traverse a Tree. CO3 

7. Write a program to Traverse a Graph using BFS or DFS. CO4 

8. Write a program that implements Bubble sort . CO5 

9. Write a program to  implements  Binary Search CO5 

10. Write a program to implements the Merge sort. CO5 

 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

15 
 

 

 Arrays are defined as the collection of similar types of data items stored at contiguous memory 
locations. It is one of the simplest data structures where each data element can be randomly 
accessed by using its index number. 

In C programming, they are the derived data types that can store the primitive type of data such 
as int, char, double, float, etc. For example, if we want to store the marks of a student in 6 
subjects, then we don't need to define a different variable for the marks in different subjects. 
Instead, we can define an array that can store the marks in each subject at the contiguous 
memory locations. 

o Each element in an array is of the same data type and carries the same size that is 4 bytes. 

o Elements in the array are stored at contiguous memory locations from which the first 

element is stored at the smallest memory location. 

o Elements of the array can be randomly accessed since we can calculate the address of 

each element of the array with the given base address and the size of the data element. 

 

Representation of an array 
 

o Index starts with 0. 

o The array's length is 10, which means we can store 10 elements. 

o Each element in the array can be accessed via its index. 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

16 
 

EXPERIMENT-1 

 
Aim: Write a program for create an array and insert an element into specific position. 
 
#include<stdio.h> 
#include<conio.h> 
void main() 
{ 
 int a[50],i,n,pos,item=0; 
 clrscr(); 
 printf("\n Enter the Array nSIze"); 
 scanf("%d", &n); 
 printf("\n Enter the array Element"); 
 for(i=0;i<n;i++) 
 { 
  scanf("%d",&a[i]); 
 } 
 printf("\n Dispaly of Array Element"); 
 for(i=0;i<n;i++) 
 { 
  printf("\n a[%d]=%d",i,a[i]); 
 } 
 printf("\n Insert Element "); 
 printf("\n======================"); 
 printf("\n Enter Position "); 
 scanf("%d",&pos); 
  n++; 
 for(i=n;i>=pos;i--) 
 {   a[i]=a[i-1]; 
 } 
 printf("\n Insert Item"); 
 scanf("%d",&item); 
 a[--pos]=item; 
 printf("\n Dispay arrary after inter new Element"); 
 for(i=0;i<n;i++) 
 { 
  printf("\n a[%d]=%d", i,a[i]); 
 } 
 getch(); 
 
}
 
 
 
 
 
 
 
 
 
 
 
 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

17 
 

 
 
 
 
 
 
 
 
 
 
Output:-- 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
  



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

18 
 

Introduction to Matrix Data structure 
 

A matrix is a two-dimensional array that consists of rows and columns. It is an 
arrangement of elements in horizontal or vertical lines of entries.  

 

Different types of Matrix : 

Here are some common types of matrices: 

• Square matrix: A square matrix is a matrix in which the number of rows and 
columns are equal. In other words, it has the same number of rows as columns. For 
example, a 3×3 matrix is a square matrix. 

• Identity matrix: An identity matrix is a square matrix in which all the diagonal 
elements are 1 and all other elements are 0. 

• Diagonal matrix: A diagonal matrix is a square matrix in which all the non-
diagonal elements are 0. 

• Upper triangular matrix: An upper triangular matrix is a square matrix in 
which all the elements below the main diagonal (the diagonal from the top left 
corner to the bottom right corner) are 0. 

• Lower triangular matrix: A lower triangular matrix is a square matrix in which 
all the elements above the main diagonal are 0. 

• Sparse matrix: A sparse matrix is a matrix in which the majority of the elements 
are 0. Sparse matrices are often represented using compressed sparse row (CSR) or 
compressed sparse column (CSC) formats to save space and optimize performance 
in algorithms that work with such matrices. 

Applications of Matrix: 

• Graph theory: Matrices can be used to represent graphs and networks. For 
example, the adjacency matrix of a graph is a matrix that describes the connections 
between nodes in the graph.  

• Image processing: Matrices are commonly used in image processing to 
represent images as matrices of pixel values.  

• Optimization: Matrices are used in optimization problems, such as linear 
programming and quadratic programming, to represent the objective function and 
constraints of the problem.  

• Machine learning:  Matrices are used to represent training data and model 
parameters, and matrix operations are used to perform model  

 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

19 
 

EXPERIMENT-2 
 
Aim: Write a program in to implement the multiplication of [3*3] matrix using Array. 
 
#include<stdio.h> 
#include<conio.h> 
void main() 
{ 
 int i,j,k; 
 int a[3][3], b[3][3], mul[3][3]; 
 
 printf("Enter elements of first matrix:\n"); 
 for(i=0;i< 3;i++) 
 { 
  for(j=0;j< 3;j++) 
  { 
   printf("a[%d][%d]=",i,j); 
   scanf("%d", &a[i][j]); 
  } 
 } 
 
 printf("Enter elements of second matrix:\n"); 
 for(i=0;i< 3;i++) 
 { 
  for(j=0;j< 3;j++) 
  { 
   printf("b[%d][%d]=",i,j); 
   scanf("%d", &b[i][j]); 
  } 
 } 
 for(i=0;i< 3;i++) 
 { 
  for(j=0;j< 3;j++) 
  { 
   mul[i][j] = 0; 
   for(k=0;k< 3;k++) 
   { 
    mul[i][j] = mul[i][j] + a[i][k]*b[k][j]; 
   } 
  } 
 } 
 printf("Multiplied matrix is:\n"); 
 for(i=0;i< 3;i++) 
 { 
  for(j=0;j< 3;j++) 
  { 
   printf("%d\t", mul[i][j]); 
  } 
  printf("\n"); 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

20 
 

 } 
 getch(); 
} 
 
 
 Output:- 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 

 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

21 
 

 

Link LIST 

 
Linked List is a very commonly used linear data structure which consists of group of nodes in a 
sequence. 

Each node holds its own data and the address of the next node hence forming a chain like 
structure. 

 

Advantages of Linked Lists 

• They are a dynamic in nature which allocates the memory when required. 

• Insertion and deletion operations can be easily implemented. 

• Stacks and queues can be easily executed. 

• Linked List reduces the access time. 

 

Disadvantages of Linked Lists 

• The memory is wasted as pointers require extra memory for storage. 

• No element can be accessed randomly; it has to access each node sequentially. 

• Reverse Traversing is difficult in linked list. 

 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

22 
 

EXPERIMENT-3 
 

 
Aim: Write a program to implement Link List. 
 
#include<stdio.h> 
#include<conio.h> 
#include<alloc.h> 
struct node 
{ 
 int data; 
 struct node *next; 
}; 
typedef struct node NODE; 
void main() 
{ 
 NODE *startnode,*newnode,*temp; 
 int i, n; 
 clrscr(); 
 printf("\n Enter Size of LINK IIST="); 
 scanf("%d",&n); 
 for(i=0;i<n;i++) 
 { 
  newnode=(NODE *)malloc(sizeof(NODE)); 
  printf("\n Enter the LList element %d=", (i+1)); 
  scanf("%d",&newnode->data); 
  if(i==0) 
  { 
   startnode=temp=newnode; 
  } 
  else 
  { 
   temp->next=newnode; 
   temp=newnode; 
  } 
 
 } 
 temp->next=NULL; 
 temp=startnode; 
 printf("\nDisplay of Link List \n "); 
 printf("\n=========================\n"); 
 while(temp!=NULL) 
 { 
  printf("|%d|%u|-->" ,temp->data,temp->next); 
  temp=temp->next; 
 } 
 getch(); 
 } 
 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

23 
 

 
 
   
Output:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

24 
 

 
 
 
 

What is Stack? 
A stack is a linear data structure in which the insertion of a new element and removal 

of an existing element takes place at the same end represented as the top of the stack. 

To implement the stack, it is required to maintain the pointer to the top of the stack, 
which is the last element to be inserted because we can access the elements only on 

the top of the stack. 

 
LIFO( Last In First Out ): 
This strategy states that the element that is inserted last will come out first. You can 

take a pile of plates kept on top of each other as a real-life example. The plate which we 

put last is on the top and since we remove the plate that is at the top, we can say that 

the plate that was put last comes out first. 

Basic Operations on Stack 
In order to make manipulations in a stack, there are certain operations provided 
to us. 

 

•  push() to insert an element into the stack 
• pop() to remove an element from the stack 
• top() Returns the top element of the stack. 
• isEmpty() returns true if stack is empty else false. 
• size() returns the size of stack. 
 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

25 
 

 
EXPERIMENT-4 

 

 
Aim: Write a program that implement stack  using. 

 i) Arrays  

 

/* Write a programe for STACk using Array */ 

#include<stdio.h> 

#include<conio.h> 

#define N 5 

void push(); 

int pop(); 

void display(); 

int stack[N]; 

int i,n; 

int top=-1; 

void main() 

{ 

 int choice; 

 do 

 { 

  clrscr(); 

  printf("\n =====MENU======"); 

  printf("\n 1-PUSH"); 

  printf("\n 2-POP"); 

  printf("\n 3- Display"); 

  printf("\n 4-Exit"); 

  printf("\n=================="); 

  printf("\n Enter Your choice"); 

  scanf("%d",&choice); 

  switch(choice) 

  { 

   case 1: push(); 

    break; 

   case 2:printf("\n Deleted element is %d",pop()); 

   display(); 

   getch(); 

   break; 

   case 3:display(); 

   getch(); 

   break; 

   case 4: exit(0); 

 

  } 

 }while(choice!=4); 

} 

//Insert Element from stack Or PUSH operation 

void push() 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

26 
 

{ 

 int item; 

 if(top+1==N) 

 { 

  printf("\n stack is Full"); 

 } 

 else 

 { 

  printf("\n Enter the element  "); 

  scanf("%d",&item); 

  top=top+1; 

  stack[top]=item; 

 } 

 } 

 //Delete th element from stack 

 int pop() 

 { 

  int item; 

  if (top<0) 

  { 

   printf("\n stack is empty"); 

  } 

  else 

  { 

   item=stack[top]; 

   top=top-1; 

  } 

  return(item); 

 } 

//Display 

void display() 

{ 

printf("\n top=%d",top); 

 if (top>0) 

 { 

  printf("\n Display of stack Element"); 

  for(i=top;i>=0;i--) 

  { 

   printf("\n %d",stack[i]); 

  } 

 } 

 else 

 { 

  printf("\n stack is empty"); 

 } 

}  
 

 

 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

27 
 

 

 

 

 

 

 

 

 

 

Output:- 
 
 

                         
 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

28 
 

 Queue is a linear data structure that is open at both ends and the operations 
are performed in First In First Out (FIFO) order. 
We define a queue to be a list in which all additions to the list are made at one 
end, and all deletions from the list are made at the other end.  The element 
which is first pushed into the order, the delete operation is first performed on 
that. 

 

• A Queue is like a line waiting to purchase tickets, where the first person in 
line is the first person served. (i.e. First come first serve). 

• Position of the entry in a queue ready to be served, that is, the first entry 
that will be removed from the queue, is called the front of the 
queue(sometimes, head of the queue), similarly, the position of the last entry 
in the queue, that is, the one most recently added, is called the rear (or 
the tail) of the queue 

Characteristics of Queue: 
• Queue can handle multiple data. 
• We can access both ends. 
• They are fast and flexible.  

Queue Representation: 

1. Array Representation of Queue: 

Like stacks, Queues can also be represented in an array: In this representation, 
the Queue is implemented using the array. Variables used in this case are 

• Queue: the name of the array storing queue elements. 
• Front: the index where the first element is stored in the array 

representing the queue. 
• Rear: the index where the last element is stored in an array representing 

the queue. 
 

https://www.geeksforgeeks.org/introduction-to-linear-data-structures/
https://www.geeksforgeeks.org/fifo-first-in-first-out-approach-in-programming/


LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

29 
 

EXPERIMENT-5 
 
Aim: Write a program that implement Queue using 

 i) Arrays  

 
//Queue implementation using Array 
#include<stdio.h> 
#include<conio.h> 
#define Max 5 
int Q[Max]; 
void Enqueue(); 
void Dequeue(); 
void Display(); 
int front=-1; 
int rear=-1; 
void main() 
{ 
  int choice; 
  do 
  { 
    clrscr(); 
    printf("\n=========MENU========="); 
    printf("\n 1-Enqueue"); 
    printf("\n 2-Dequeue"); 
    printf("\n 3-Display"); 
    printf("\n 4-Exit"); 
    printf("\n======================="); 
    printf("\n Enter your Choice="); 
    scanf("%d",&choice); 
    switch(choice) 
    { 
      case 1: Enqueue(); 
       getch(); 
       break; 
      case 2: Dequeue(); 
       Display(); 
       getch(); 
       break; 
      case 3: Display(); 
       getch(); 
       break; 
      case 4: exit(0); 
 
 
    } 
 
 
  }while(choice !=4); 
 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

30 
 

 
} 
void Enqueue() 
{ 
  int iteam; 
  printf("\n Enter element of Queue="); 
  scanf("%d",&iteam); 
  printf("\n Front=%d",front); 
  printf("\n Rear=%d",rear); 
 
 
  if(rear+1==Max) 
  { 
    printf("\n Queue is Overflow"); 
  } 
  else 
  { 
    if(front==-1 && rear==-1) 
    { 
      front=front+1; 
      rear=rear+1; 
      Q[rear]=iteam; 
    } 
    else 
    { 
      rear=rear+1; 
      Q[rear]=iteam; 
    } 
  } 
} 
 
 
//Dequeue Function 
void Dequeue() 
{ 
  int iteam; 
  if(front==-1 && rear==-1) 
  { 
    printf("\n Queue is Underflow"); 
  } 
  else 
  { 
      if(front==rear) 
      { 
 iteam=Q[front]; 
 front=rear=-1; 
      } 
      else 
      { 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

31 
 

 iteam=Q[front]; 
 front=front+1; 
      } 
      printf("\n Deleted iteam is =%d",iteam); 
  } 
} 
 
 
 
void Display() 
{ 
  int i; 
  if(rear>=0) 
  { 
    printf("\n Display of Queue elemenets \n"); 
    for(i=front; i<=rear; i++) 
    { 
     printf("%d\t",Q[i]); 
    } 
  } 
  else 
  { 
     printf("Queue is empty"); 
  } 
} 
 
 
 
Output:- 

 
 
 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

32 
 

   
 
 
 
A tree data structure is a hierarchical structure that is used to represent and organize 

data in a way that is easy to navigate and search. It is a collection of nodes that are 

connected by edges and has a hierarchical relationship between the nodes.  

The topmost node of the tree is called the root, and the nodes below it are called the 

child nodes. Each node can have multiple child nodes, and these child nodes can also 

have their own child nodes, forming a recursive structure 

. 
Basic Operation Of Tree Data Structure: 

• Create – create a tree in the data structure. 
• Insert − Inserts data in a tree. 
• Search − Searches specific data in a tree to check whether it is present or not. 
• Traversal: 

• Preorder Traversal – perform Traveling a tree in a pre-order manner in the 
data structure. 

• In order Traversal – perform Traveling a tree in an in-order manner. 
• Post-order Traversal –perform Traveling a tree in a post-order manner. 

 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

33 
 

 

 

EXPERIMENT-6 
 
Aim: Write a program to implement traverse a Tree. 

 
#include<stdio.h> 
#include<conio.h> 
struct node 
{ 
 int data; 
 struct node *left; 
 struct node *right; 
}; 
typedef struct node NODE; 
 
void insert(NODE *,NODE *); 
void preorder(NODE *tree); 
void inorder(NODE *tree); 
void postorder(NODE *tree); 
 
NODE *newnode, *root; 
NODE *getnode(); 
void main() 
{ 
int choice; 
char ans='n'; 
root=NULL; 
clrscr(); 
do 
{ 
printf("\n Programe for Implement Simple Binary Tree"); 
printf("\n 1. Create"); 
printf("\n 3. Inorder"); 
printf("\n 2. Preorder"); 
printf("\n 4. PostOrder"); 
printf("\n 5. Exit"); 
printf("\n Enter Your choice"); 
scanf("%d",&choice); 
 switch(choice) 
 { 
   case 1:root=NULL; 
   do 
   { 
 
    newnode=getnode(); 
 
   printf("\n Enter The Element="); 
   scanf("%d",&newnode->data); 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

34 
 

   if(root==NULL) 
   { 
   root=newnode; 
   } 
   else 
   { 
   insert(root,newnode); 
   } 
   printf("\n Do you want to Enter more element?(y/n)"); 
   ans=getche(); 
 
  }while(ans=='y'||ans=='Y'); 
   clrscr(); 
   break; 
 
   case 2: puts("\n Preorder traversing Tree"); 
 
   preorder(root); 
   break; 
   case 3: 
 if(root==NULL) 
 { 
 printf("Tree is Not Created"); 
 } 
 else 
 { 
   printf("\n Inorder traversing Tree \n"); 
    inorder(root); 
    //break; 
 } 
 break; 
   case 4: puts("\n postorder Traversing Tree \n"); 
    postorder(root); 
    break; 
   case 5: puts("END"); 
    exit (0); 
 } 
}while(choice!=5); 
 
} 
void inorder(NODE *p) 
{ 
 if(p!=NULL) 
 { 
  inorder(p->left); 
  printf("%d\t",p->data); 
  inorder(p->right); 
 } 
} 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

35 
 

//Preorder-------------- 
void preorder(NODE *p) 
{ 
 if(p!=NULL) 
 { 
  //inordr(p->left); 
  printf("%d\t",p->data); 
  preorder(p->left); 
  preorder(p->right); 
 } 
} 
//Postorder-------------- 
void postorder(NODE *p) 
{ 
 if(p!=NULL) 
 { 
   postorder(p->left); 
   postorder(p->right); 
   printf("%d\t",p->data); 
 
 } 
} 
 
void insert(NODE *root, NODE *newnode) 
{ 
 char ch; 
 printf("\n Where to insert left(l)/right(r) %d", root->data); 
 ch=getche(); 
 if((ch=='r')||(ch=='R')) 
 { 
  if (root->right==NULL) 
  { 
 root->right=newnode; 
  } 
  else 
  { 
   insert(root->right,newnode); 
  } 
 } 
 else 
 { 
  if(root->left==NULL) 
  { 
   root->left=newnode; 
  } 
  else 
  { 
   insert(root->left,newnode); 
  } 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

36 
 

 } 
} 
NODE *getnode() 
{ 
   NODE *temp; 
   temp=(NODE *) malloc(sizeof(NODE)); 
    temp->left=NULL; 
    temp->right=NULL; 
    
   return temp; 
}  
Output:- 

 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

37 
 

 
 
 
 
 
 
 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

38 
 

A graph is a non-linear data structure composed of vertices and edges. Edges are lines or arcs 
that connect any two nodes in the network. Vertices are also known as nodes. A graph, in more 
technical terms, is made up of vertices (V) and edges (E). The representation of a graph is G(E, 
V). So, in this article, we will look at some Graph Traversal Techniques. 

Graph Traversal in Data Structure 

We can traverse a graph in two ways : 

1. BFS ( Breadth First Search ) 

2. DFS ( Depth First Search ) 

BFS Graph Traversal in Data Structure 

Breadth-first search (BFS) traversal is a technique for visiting all nodes in a given network. This 
traversal algorithm selects a node and visits all nearby nodes in order. After checking all nearby 
vertices, examine another set of vertices, then recheck adjacent vertices. This algorithm uses a 
queue as a data structure as an additional data structure to store nodes for further processing. 
Queue size is the maximum total number of vertices in the graph. 

DFS Graph Traversal in Data Structure 

When traversing a graph, the DFS method goes as far as it can before turning around. This 
algorithm explores the graph in depth-first order, starting with a given source node and then 
recursively visiting all of its surrounding vertices before backtracking. DFS will analyze the 
deepest vertices in a branch of the graph before moving on to other branches. To implement 
DFS, either recursion or an explicit stack might be utilized. 

 

 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

39 
 

 
EXPERIMENT-7 

 
Aim: Write a program to Traverse a Graph using BFS. 
 
#include<stdio.h> 
#include<conio.h> 
#include<stdlib.h> 
#define size 20 
#define TRUE 1 
#define FALSE 0 
int g[size][size]; 
int visit[size]; 
int Q[size]; 
int front , rear; 
int n; 
void main() 
{ 
 int v1,v2; 
 char ans='y'; 
 void create(),bfs(); 
 clrscr(); 
 create(); 
 clrscr(); 
 printf("\n The Adjacency Matrix for the graph \n"); 
 for(v1=0;v1<n; v1++) 
 { 
  for(v2=0;v2<n;v2++) 
  { 
   printf("%d",g[v1][v2]); 
  } 
   printf("\n"); 
 
 } 
 getch(); 
 do 
 { 
  for(v1=0;v1<n;v1++) 
  { 
   visit[v1]=FALSE; 
   } 
   clrscr(); 
   printf("\n Enter the Vertex from which you want to traverse"); 
   scanf("%d",&v1); 
   if(v1>=n) 
   { 
    printf("\n Invalid Vertex"); 
   } 
   else 
   { 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

40 
 

    printf("\n The BFS of The Graph is \n"); 
    bfs(v1); 
    getch(); 
   } 
   printf("\n Do you want to traverse any other vertix ?(y/n)"); 
   ans=getche(); 
  }while(ans=='y'); 
  exit(0); 
} 
void create() 
{ 
 int v1, v2; 
 char ans='y'; 
 printf("\n This is a Program to Create a Graph"); 
 printf("\n The display is in BFS manner"); 
 printf("\n Enter no. of nodes="); 
 scanf("%d",&n); 
 for(v1=0;v1<n;v1++) 
 { 
  for(v2=0;v2<n;v2++) 
  { 
   g[v1][v2]=FALSE; 
  } 
 } 
  printf("\n Enter the vertex no. starting from 0"); 
  do 
  { 
   printf("\n Enter the vertex v1 & v2 \n"); 
   scanf("%d%d",&v1,&v2); 
   if(v1>=n || v2>=n) 
   { 
    printf("Invalid Verex Value \n"); 
   } 
   else 
   { 
    g[v1][v2]=TRUE; 
    g[v2][v1]=TRUE; 
   } 
   printf("\n \n Add more edges ??(y/n)"); 
   ans=getche(); 
  } while(ans=='y'); 
} 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

41 
 

 
void bfs(int v1) 
{ 
int v2; 
visit[v1]=TRUE; 
front=rear=-1; 
Q[++rear]=v1; 
while(front!=rear) 
{ 
v1=Q[++front]; 
printf("%d\n",v1); 
for(v2=0;v2<n;v2++) 
{ 
 if(g[v1][v2]==TRUE && visit[v2]==FALSE) 
 { 
  Q[++rear]=v2; 
  visit[v2]=TRUE; 
  } 
 } 
} 
 
Output:- 

}  

 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

42 
 

 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

43 
 

 
Sorting refers to rearrangement of a given array or list of elements according to a 
comparison operator on the elements. The comparison operator is used to decide the 
new order of elements in the respective data structure.  
 
Why Sorting Algorithms are Important 
The sorting algorithm is important in Computer Science because it reduces the 
complexity of a problem. There is a wide range of applications for these 
algorithms, including searching algorithms, database algorithms, divide and 
conquer methods, and data structure algorithms 

  

S.No. Searching Algorithm Sorting Algorithm 

1. 

Searching Algorithms are 
designed to retrieve an element 
from any data structure where it 

is used. 

A Sorting Algorithm is used to arranging 
the data of list or array into some specific 

order. 

2. 

These algorithms are generally 
classified into two categories i.e. 
Sequential Search and Interval 

Search. 

There are two different categories in 
sorting. These are Internal and External 

Sorting. 

3. 
The worst-case time complexity 
of searching algorithm is O(N). 

The worst-case time complexity of many 
sorting algorithms like Bubble Sort, 

Insertion Sort, Selection Sort, and Quick 
Sort is O(N2). 

4. 
There is no stable and unstable 

searching algorithms. 

Bubble Sort, Insertion Sort, Merge Sort etc 
are the stable sorting algorithms whereas 
Quick Sort, Heap Sort etc are the unstable 

sorting algorithms. 

5. 
The Linear Search and the 

Binary Search are the examples 
of Searching Algorithms. 

The Bubble Sort, Insertion Sort, Selection 
Sort, Merge Sort, Quick Sort etc are the 

examples of Sorting Algorithms. 

 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

44 
 

 
EXPERIMENT-8 

 

Aim: Write a program that implements  Bubble sort.. 
 

i) Bubble sort  
 

#include<stdio.h> 
#include<conio.h> 
void main() 
{ 
  int a[20],i,j,n,temp; 
 // clrscr(); 
  printf("\n Enter insert element"); 
  scanf("%d",&n)  ; 
//----------------Arry---------------------- 
  printf("\n Enter Array element"); 
  for(i=0;i<n;i++) 
  { 
      scanf("%d",&a[i]); 
  } 
  printf("\n Dispaly Array Element"); 
  for(i=0;i<n; i++) 
  { 
      printf("\n %d",a[i]); 
  } 
//---------------Bubble Short Logic------------------ 
 
  for(i=0;i<n-1; i++) 
  { 
       for(j=0;j<n-1; j++) 
       { 
           if(a[j]>a[j+1]) 
           { 
             temp=a[j]; 
             a[j]=a[j+1]; 
             a[j+1]=temp; 
           } 
       } 
  } 
//-------------Dispaly Array after shorting 
 
  printf("\n Dispaly Array after short"); 
  for(i=0;i<n; i++) 
  { 
 
      printf("\n %d",a[i]); 
  } 
  getch(); 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

45 
 

} 
 
 
 
 
Output:- 

 
 

 
 
 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

46 
 

 
 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

47 
 

EXPERIMENT-9 
 
     Aim: Write a program to  implements the following i) Binary Search ii) Merge sort. 
 

i) Binary Search 

//----------Binary Search :----------- 
// Array element should be in shorted order 
 
#include<stdio.h> 
#include<conio.h> 
void main() 
{ 
 int a[50],i, loc=0, beg, end,mid, item,n, flag=0; 
 clrscr(); 
 printf("How many element"); 
 scanf("%d",&n); 
//-------------------Store element in Array------------ 
 printf("Enter the element of array"); 
 for(i=0;i<= n-1;i++) 
 { 
  scanf("%d",&a[i]); 
 } 
//---------------------------------------------------- 
//----------------Search Item-------------------- 
 printf("Enter element to search"); 
 scanf("%d", &item); 
//------------------------------------------------ 
 beg=0; 
 end=n-1; 
 
//---------------Binary Search --Logic----------------- 
 while((beg<=end) && (item!=a[mid]) ) 
 { 
     mid= ((beg+end)/2); 
     if(item==a[mid]) 
     { 
      printf("\n Search is success"); 
      loc=mid; 
      printf("\n posation of iteam %d \n", loc+1); 
      flag=flag+1; 
     } 
     else if(item< a[mid]) 
     { 
       end=mid-1; 
     } 
     else 
     { 
      beg=mid+1; 
     } 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

48 
 

 } 
//--------------------------------------------------- 
 if(flag==0) 
 { 
  printf("\n Iteam is not found"); 
 } 
 getch(); 
} 

 
  
     Output:- 
 
 

 
 
 
 
 
 
 
 
 
 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

49 
 

 
 
 
 
 
 

EXPERIMENT-10 
 
     Aim: Write a program to  implements Merge sort. 
 

//--------Merge Sort-------------// 

 

#include<stdio.h> 

#include<conio.h> 

int n; 

void main() 

{ 

  int i,low,high; 

  int A[10]; 

  void MSort(int A[10],int low, int high); 

  void Display(int A[10]); 

  clrscr(); 

  printf("\n Merge Sort"); 

  printf("\n Enter lenght of List"); 

  scanf("%d",&n); 

  printf("\n Enter list element"); 

  for(i=0;i<n;i++) 

  { 

   scanf("%d",&A[i]); 

  } 

  low=0; 

  high=n-1; 

  MSort(A,low,high); 

  Display(A); 

  getch(); 

} 

//----------------MergeSort---------------------------// 

void MSort(int A[10],int low, int high) 

{ 

  int mid; 

  void combine(int A[10],int low,int mid, int high); 

  if(low<high) 

  { 

   mid=(low+high)/2;// split the list at mid 

   MSort(A,low,mid); //first sublist 

   MSort(A,mid+1,high); //Second sub list 

   combine(A,low,mid,high);// merge of two sublists 

  } 

} 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

50 
 

//----------------combine---------------------------// 

void combine(int A[10],int low, int mid, int high) 

{ 

 int i,j ,k; 

 int temp[10]; 

 i=low; 

 k=low; 

 j=mid+1; 

 while(i<=mid && j<=high) 

 { 

  if (A[i]<=A[j]) 

  { 

    temp[k]=A[i]; 

     i++; 

     k++; 

  } 

  else 

  { 

   temp[k]=A[j]; 

   j++; 

   k++; 

  } 

 } 

 while(i<=mid) 

 { 

  temp[k]=A[i]; 

  i++; 

  k++; 

 } 

 while(j<=high) 

 { 

  temp[k]=A[j]; 

  j++; 

  k++; 

 } 

 //copy the element from temp array to A 

 for(k=low; k<=high; k++) 

 { 

   A[k]=temp[k]; 

 } 

 

} 

//----------------Display Sorted Array---------------------------// 

void Display(int A[10]) 

{ 

  int i; 

  printf("\n The Sorted Array is"); 

  for(i=0;i<n;i++) 

  { 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

51 
 

   printf("\n %d", A[i]); 

  } 

} 

 
 
 
 
 
 
                                                         

   Output:- 

 

     



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

52 
 

 
 
 
 

 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

53 
 

EXPECTED VIVA VOICE QUESTIONS 
 
 

1. What is Data Structure? 

Data structure refers to the way data is organized and manipulated. It seeks to find ways to make data 

access more efficient. When dealing with the data structure, we not only focus on one piece of data but 

the different set of data and how they can relate to one another in an organized manner. 

2. What is Link List? 

A linked list is a sequence of nodes in which each node is connected to the node following it. This 

forms a chain-like link for data storage.  

3.  What is Queue? 

A queue is a data structure that can simulate a list or stream of data. In this structure, new 

elements are inserted at one end, and existing elements are removed from the other end. 

 4. What are Binary Tree? 

A binary tree is one type of data structure that has two nodes, a left node, and a right node. In 

programming, binary trees are an extension of the linked list structures. 

  5. What is Stack? 

A stack is a data structure in which only the top element can be accessed. As data is stored in the stack, 

each data is pushed downward, leaving the most recently added data on top. 

  6. What is Merge Sort? 

Merge sort, is a divide-and-conquer approach for sorting the data. In a sequence of data, 

adjacent ones are merged and sorted to create bigger sorted lists. These sorted lists are then 

merged again to form an even bigger sorted list, which continues until you have one single 

sorted list. 

  7. What is the difference between PUSH and POP? 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

54 
 

Pushing and popping applies to the way data is stored and retrieved in a stack. A push denotes data 

being added to it, meaning data is being <pushed= into the stack. On the other hand, a pop denotes data 

retrieval, and in particular, refers to the topmost data being accessed. 

  8. What is a linear search? 

   A linear search refers to the way a target key is being searched in a sequential data structure. In this 

method, each element in the list is checked and compared against the target key. The process is repeated 

until found or if the end of the file has been reached. 

       9. What is a bubble sort and how do you perform it? 

A bubble sort is one sorting technique that can be applied to data structures such as an array. It works by 

comparing adjacent elements and exchanges their values if they are out of order. This method lets the 

smaller values <bubble= to the top of the list, while the larger value sinks to the bottom. 

10. What is Graph? 

A graph is one type of data structure that contains a set of ordered pairs. These ordered pairs are also 

referred to as edges or arcs and are used to connect nodes where data can be stored and retrieved. 

11. What is an AVL Tree? 

An AVL tree is a type of binary search tree that is always in a state of partially balanced. The balance is 

measured as a difference between the heights of the subtrees from the root. This self-balancing tree was 

known to be the first data structure to be designed as such. 

 12. What are double linked list? 

Doubly linked lists are a special type of linked list wherein traversal across the data elements can be 

done in both directions. This is made possible by having two links in every node, one that links to the 

next node and another one that connects to the previous node. 

 

 

 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

55 
 

 

 

 

 



LAKSHMI NARAIN COLLEGE OF TECHNOLOGY & EXCELLENCE, BHOPAL 

 

56 
 

 


